ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Data Sheet January 2002

6A, 600V Hyperfast Diodes

The RHRD660 and RHRD660S are hyperfast diodes with soft recovery characteristics (t_{rr} < 30ns). They have half the recovery time of ultrafast diodes and are silicon nitride passivated ion-implanted epitaxial planar construction.

These devices are intended for use as freewheeling/ clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Formerly developmental type TA49057.

Ordering Information

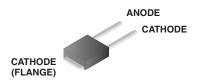
PART NUMBER	PACKAGE	BRAND
RHRD660	TO-251	RHR660
RHRD660S	TO-252	RHR660

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-252 variant in tape and reel, e.g. RHRD660S9A.

Symbol

Features

•	Hyperfast with Soft Recovery<30	าร
•	Operating Temperature175°	C
•	Reverse Voltage Up To)V


- · Avalanche Energy Rated
- Planar Construction

Applications

- Switching Power Supplies
- Power Switching Circuits
- General Purpose

Packaging

JEDEC STYLE TO-251

JEDEC STYLE TO-252

PHPDSSO PHPDSSOS

LIMITS

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RUHD000, RUHD0002	OINLI
Peak Repetitive Reverse Voltage	600	V
Working Peak Reverse Voltage	600	V
DC Blocking VoltageV _R	600	V
Average Rectified Forward Current $I_{F(AV)}$ ($T_C = 152^{\circ}C$)	6	Α
Repetitive Peak Surge Current	12	Α
Nonrepetitive Peak Surge Current	60	Α
Maximum Power Dissipation	50	W
Avalanche Energy (See Figures 10 and 11)	10	mJ
Operating and Storage Temperature	-65 to 175	oC
Maximum Lead Temperature for Soldering		
(Leads at 0.063 in. (1.6mm) from case for 10s)	300	oC
Package Body for 10s, see Tech Brief 334T _{PKG}	260	оС

RHRD660, RHRD660S

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
V _F	I _F = 6A	-	-	2.1	V
	$I_F = 6A, T_C = 150^{\circ}C$	-	-	1.7	V
I _R	V _R = 600V	-	-	100	μΑ
	$V_R = 600V, T_C = 150^{\circ}C$	-	-	500	μΑ
t _{rr}	$I_F = 1A$, $dI_F/dt = 200A/\mu s$	-	-	30	ns
	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	-	35	ns
t _a	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	16	-	ns
t _b	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	8.5	-	ns
Q _{RR}	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	45	-	nC
СЛ	V _R = 10V, I _F = 0A	-	20	-	pF
R _{θJC}		-	-	3	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

I_R = Instantaneous reverse current.

 t_{rr} = Reverse recovery time (See Figure 9), summation of $t_a + t_b$.

 t_a = Time to reach peak reverse current (See Figure 9).

 t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9).

Q_{RR} = Reverse recovery charge.

 C_J = Junction capacitance.

 $R_{\theta,JC}$ = Thermal resistance junction to case.

pw = Pulse width.

D = Duty cycle.

Typical Performance Curves

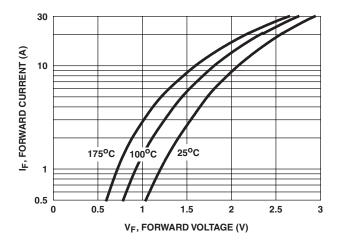


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

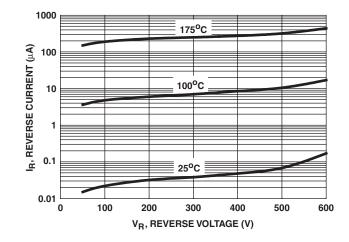


FIGURE 2. REVERSE CURRENT vs REVERSE

Typical Performance Curves (Continued)

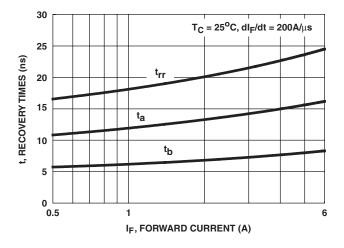


FIGURE 3. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT

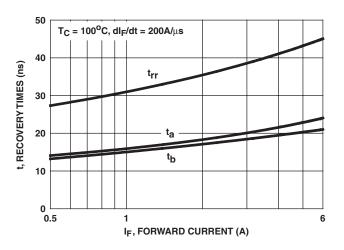


FIGURE 4. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT

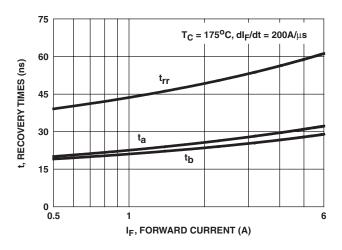


FIGURE 5. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT

FIGURE 6. CURRENT DERATING CURVE

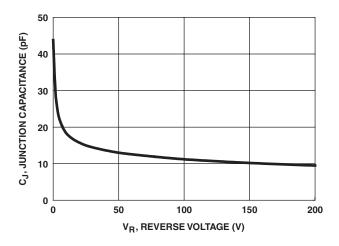


FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE

©2002 Fairchild Semiconductor Corporation

Test Circuits and Waveforms

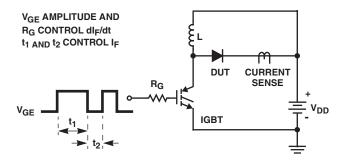


FIGURE 8. t_{rr} TEST CIRCUIT

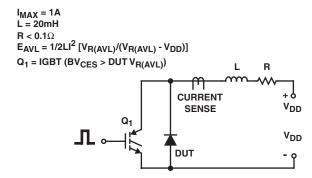


FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

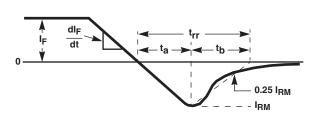


FIGURE 9. t_{rr} WAVEFORMS AND DEFINITIONS

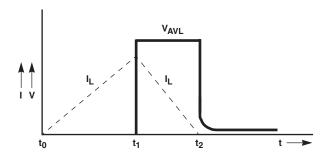


FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} TruTranslation™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4